Ultrafast imaging technology

From visible light to high-energy X-ray photons

Zhehui (Jeff) Wang

P-25, LANL

P/T colloquium, Jan. 19, 2017

Dynamic, fast & interesting

UNCLASSIFIED

LANL Jan 2017

How fast is ultrafast?

Outline

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology

New ingredients for ultrafast imaging

- photons + <u>cameras</u> + <u>data</u>
- LANL interest → MaRIE & others (LCLS, APS, etc)

Towards gigahertz HE x-ray imaging

- Software: Data challenge (acquisition, storage, transport, processing)
- Hardware: Materials challenge
 - Conventional "bulk" materials → architecture innovations (near term)
 - Micro/Nano materials → Proof-of-concepts (Long term)

William Henry Fox Talbot

'Further progress in this direction would not be difficult --British J. Photography, 1864

UNCLASSIFIED

LANL Jan 2017

Eadweard Muybridge

and the galloping horse photography

Muybridge designed his own high speed electronic shutter and electro-timer

UNCLASSIFIED

LANL Jan 2017

Harold "Doc" Edgerton

"perfected strobe lighting"

EG&G founder

UNCLASSIFIED

and stroboscope photography

LANL Jan 2017

Ahmed Zewail

oś Alamos

VO₂ phase transition

and the dancing molecule photography

Entangled nanoparticles

UNCLASSIFIED

LANL Jan 2017

Plenty of 'horses' grazing in nature: from mm- to nano- land

Material science, Geology, Quantum world, ...

UNCLASSIFIED

LANL Jan 2017

Is ultrafast imaging boring for macroscopic objects?

UNCLASSIFIED

LANL Jan 2017

Non-trivial macroscopic applications

Seeing things around the corner

R. Raskar et al. — MIT Media Lab

LANL Jan 2017

"Trillion frame cameras" for visible light booming

"CUP" Gao et al (2014)

"STAMP"
Suzuki et al (2015)

LANL Jan 2017

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology

New ingredients for ultrafast imaging

- Lighting + cameras + data
- LANL interest → MaRIE & others (LCLS, APS, etc)

Towards gigahertz HE x-ray imaging

- Software: Data challenge (acquisition, storage, transport, processing)
- Hardware: Materials challenge
 - Conventional "bulk" materials → architecture innovations (near term)
 - Micro/Nano → Proof-of-concepts (Long term)

High-speed imaging technology triangle

Camera

Data & methods

LANL Jan 2017

Evolution of lighting

UNCLASSIFIED

LANL Jan 2017

Evolution of high-speed imaging technologies

UNCLASSIFIED

LANL Jan 2017

A lot of parallel efforts...

XFEL

sync

XFEL

XFEL

XFEL

XFEL

XFEL

XFEL

XFEL

HEP

sync

Detector/	Voxel	Noise	CMOS	Pixel Bias	Digital	Frame rate
Camera	dimension		technol.		clock	
	(μm^3)		(µm)	(V)	(MHz)	(MHz)
CSPAD	110 ×110	330 e ⁻	0.25	190	25	1.2×10 ⁻⁴
	× 500		(TSMC)			
ePix100a	50 × 50	50 e ⁻	0.25	200	0.1	1.2×10 ⁻⁴
	× 500		(TSMC)			
Keck-PAD	150 ×150	1530e ⁻	0.25	200	50	6.5
	× 500	(860 µV)	(TSMC)			
AGIPD 1.0	200 ×200	265e ⁻	0.13	500	99	4.5
	× 500	<14.4	(IBM)			
DSSC	136 (hex)	50 e ⁻	0.13	150	700	5
(DEPFET)	× 450		(IBM)			
pnCCD	75 ×75	5 e ⁻	CCD	140	10	2.5×10 ⁻⁴
(CAMP)	× 280	(100 ms)		$(0.5V/\mu m)$		(5, burst)
LPD	500 ×500	1000 e ⁻	0.13	~250	100	4.5
	× 500		(IBM)			
MPCCD	50 × 50	200 e	CCD	~20	5	6×10 ⁻⁵
[HG:2015]	× 50					
SOPHIAS	30 × 30	150 e ⁻	0.2	~200	25	6×10 ⁻⁵
	× 500		FD-SOI			
JUNGFRAU	75 × 75	100 e	0.11	220	40	2.4×10 ⁻³
[SMS:2015]	× 450		(UMC)			
ALPIDE ²	28 × 28	~ 20 e ⁻	0.18	<10	40	5.0×10 ⁻²
(MAPS ³)	× 50		(TowerJazz)			
FASPAX	100×100	<1000 e	130nm	1000	100	13
[ZIM:2016]	× 500		SiGe			(burst)

(IBM)

UNCLASSIFIED

LANL Jan 2017

MaRIE driven ultrafast imaging technology

Inputs: Rich Sheffield, Dinh Nguyen

MaRIE (w/o seeding)

T. Raubenheimer LCLS-II-HE Workshop, September 26-27, 2016 P. Abbamonte et al., SLAC-R-1053 (2015)

UNCLASSIFIED

ICHSIP 2016

MaRIE-camera: Performance summary

- PicoSecond sensor <-> Materials challenge
 - highly efficient (>50%) x-ray detection at 30-keV and above energies.
 - Sub-ns (<100-ps) X-ray sensor and storage response.
- GigaHertz frame-rate <-> Fabrication/scaling challenge
 - Many pixels, interframe time, 300 ps (3 GHz)
 - Multiple frames per experiment/ framing for acoustic velocities across grains
 - Single line-of-sight
- Large data <-> Data challenge
 - 3 MB per image (20 bit, 1 Mpix)
 - Up to 10⁶ images per experiment
 - big data sets transmission and processing driven by scientific "co-design"

UNCLASSIFIED

The August 2016 workshop

High-energy and Ultrafast X-Ray Imaging Technologies and Applications

A MaRIE workshop shining a light on the future of ultrafast high-energy photon technology

ACCOMMODATIONS ABSTRACTS REGISTRATION PROGRAM TRAVEL

High-energy and Ultrafast X-Ray Imaging Technologies and Applications

Date: August 2-3, 2016

Hotel venue: Hilton Santa Fe at Buffalo Thunder

The goal of this workshop is to gather leading experts in the fields related to ultrafast high-energy photon imaging and prioritize the path forward for ultrafast hard x-ray imaging technology development, identify important applications in the next 5–10 years, and establish foundations for near-term R&D collaboration.

This workshop is one in a series being organized by Los Alamos National Laboratory to engage broader scientific community in the MaRIE (Matter-Radiation Interactions in Extremes) development process. MaRIE is the proposed

Local Organizers

- Michael Stevens
- Zhehui (Jeff) Wang (505) 665-5353

Meeting Planner

Peggy Vigil (505) 667–8448For logistical purposes and questions

External Co-Organizers

- Peter Denes (LBL)
- Sol Gruner (Cornell Univ.)

UNCLASSIFIED

LANL Jan 2017

The August 2016 workshop summary

Ultrafast and High-Energy X-Ray Imaging Technologies & Applications	
(August 2-3, 2016; Santa Fe, NM 87506, USA)	
Table of Contents	
Executive summary	2
Introduction	3
Type I & Type II ultrafast and high-energy X-ray imaging technologies	3
Charges to the workshop	4
Workshop overview	4
Workshop findings	6
A. The state-of-the art imaging technologies	
B. Scientific and LANL mission needs	
C. Relations to large data and on-board data processing (ASIC)	
D. Emerging sensor materials and device possibilities	
E. Near-term & long-term ultrafast imaging technologies for HE-XFEL.	
Recommendations	
Appendices	
Workshop participants & group photo	
Workshop agenda	
Presentation summaries	

UNCLASSIFIED

LANL Jan 2017

Two-pronged development process: (Low & High Risk)

Performance	Type I imager	Type II imager
X-ray energy	30 keV	42-126 keV
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps
Number of frames	10	10 - 30
X-ray detection efficiency	above 50%	above 80%
Pixel size/pitch	≤ 300 mm	< 300 mm
Dynamic range	103 X-ray photons	≥ 10 ⁴ X-ray photons
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix

MaRIE KPP requirements

ASIC/Data	No. Chan.	A n a l o g bandwidth (GHz)	digital samplin g (GHz)	S/N (dB)	Bit Res.	CMOS technol.
PSEC4	6	1.5	15		10.5	IBM 130 nm
"Hawaii chip"	128?	3	20	58 dB/ 1Vpp	9.4	(TSMC 130 nm)
"Cornell Keck GHz"	384 x 256	0.5				
epix∆	1M	3			>= 8	TSMC 250 nm

UNCLASSIFIED

LANL Jan 2017

Outline

Introduction

- Historical highlights of high-speed photography/imaging
- Recent advances in ultrafast imaging technology

New ingredients for ultrafast imaging

- 'Horses' + photons + cameras + data
- LANL interest → MaRIE & others (LCLS, APS, etc)

Towards gigahertz HE x-ray imaging

- Software: Data challenge (acquisition, storage, transport, processing)
- Hardware: Materials & engineering challenge
 - Conventional "bulk" materials → architecture innovations (near term)
 - Micro/Nano → Proof-of-concepts (Long term)

Data challenge: Exascale computing & Data analytics

UNCLASSIF

The Opportunities and Challenges of Exascale Computing Density Gradient Summary Report of the Advanced Scientific **Computing Advisory** Committee (ASCAC) **Subcommittee** Fall 2010 Office of Science

Solutions in the making

Z. Wang Slide 24

May 2016

Efficiency (1): High-Z semiconductor sensors

Direct detection

CZT (LLNL)

UNCLASSIFIED

May 2016

Speed limited by e-/h mobilities, bandgap also important

Material	Mobility, μ, cm ² /V.s	Dielectric Constant, ε	Bandgap, Eg, eV	Break down field, Eb 10 ⁶ V/cm	BFOM Ratio	Tmax, °C
Si	1300	11.9	1.12	0.3	1.0	300
GaAs	5000	12.5	1.42	0.4	9.6	300
4H-SiC	260	10	3.2	3.5	3.1	600
GaN	1500	9.5	3.4	2	24.6	700

BFOM is Baliga's figure of merit for power transistor performance ($\mu*\epsilon*Eg^3$)

B. J. Baliga, IEEE Electron Dev. Lett. 10, 455 (1989).

	Si	GaAs	6H-SiC	4H-SiC	GaN	Diamond
Bandgap (eV)	1.12	1.43	3.03	3.26	3.45	5.45
Relative dielectric constant	11.9	13.1	9.66	10.1	9	5.5
Breakdown field (kV/cm)	300	400	2500	2200	2000	10000
E mobility (cm²/Vs)	1500	8500	500	1000	1250	2200
Hole mobility (cm²/Vs)	600	400	101	115	850	850
Thermal conductivity (W/cmK)	1.5	0.46	4.9	4.9	1.3	22
Saturated electron drift velocity (100 μm/ ns)	1	1	2	2	2.2	2.7

del Alamo, Nature 479, 317 (2011)

L. M. Tolbert, et al., Proc. IASTED Mult. Conf. Pwr En. Syst. 7, 317 (2003).

UNCLASSIFIED

ICHSIP 2016

Thick sensors \rightarrow insufficient speed for GHz imaging

Cons: required sensor thickness

	42	keV	126 keV		
	Λ_{tot} (cm)	3 Λ_{tot} (cm)	Λ_{tot} (cm)	3 \(\Lambda_{tot}\) (cm)	
C (Diamond)	1.4	4.2	2.0	6.0	
Si	0.7	2.0	2.7	8.1	
Ge	3.3e-2	0.1	0.52	1.55	
GaAs	3.4e-2	0.1	0.52	1.55	
CdTe	9.5e-3	0.028	0.17	0.51	

- charge collection length for 1 ns, ≤ 200 μm (saturated drift 2x10⁷ cm/s)
- aspect ratio, 10 to > 1000.

→ 100 MHz (Type I technology OK), Type II (GHz difficult)

Dragone et al (2016)

Efficiency (2): Scintillators also have significant problems at GHz

• Pros

- Light moves x1000 faster than e-.
- Thin scintillators sufficient

Cons

- ♦ Light yield & decay time constants.
- Needs ultrafast photodetectors (semiconductors)
- ♦ Material supply issues
- ♦ Spatial resolution limited due to internal reflection

(ZnO)

UNCLASSIFIED

NEED material innovations/discoveries for GHz imaging

UNCLASSIFIED

Sandia October 2016

Z. Wang Slide 29

Silde 28

Silicon revisited

Is Silicon /CMOS out for GHz HE X-ray imaging?

ICHSIP 2016 Z. Wang Slide 30

The fabrication/scaling advantages: cmos is the best practice

Driven by

- material selection (Si, SiO₂)
- Economics / user (consumer) base

Leveraging prior development/investment

- High-energy physics community (CERN, Fermilab and others)
- Semiconductor industry

Image Sensor Market by Main Usage

UNCLASSIFIED

Sandia October 2016

Sound community knowledge base in imaging and other uses

Compton

Si

UNCLASSIFIED

May 2016

The Problem: 2D hybrid structure can not accommodate speed & efficiency simultaneously

UNCLASSIFIED

3D Architectural innovations have been proposed before

Parker et al (1997)

(2010)

LANL Jan 2017

Compton scattering poses a new problem for HE X-rays

Spectroscopy imaging

Single-photon counting

UNCLASSIFIED

LANL Jan 2017

Our proposal: Thin-Film Cameras (TFC) using silicon (broader applications than MaRIE)

More details: Wang (2015) JINST 10 C12013

UNCLASSIFIED

JINST 2015

Other structural & processing innovations?

Material Processes	Features
Thin film process	novel thin-film properties
Additive process	Micro-, nano-grains
Microfluidic process	Versatile nano- particle assembly
Polymer-assisted fabrication	Versatile nano- particle assembly
Self-assembly/ biological assisted processes	Autonomous

Existing processes: CMOS, SOI, SiGe.

UNCLASSIFIED

Sandia October 2016

Summary

Ultrafast imaging technology development requires interdisciplinary approach

→ 'global optimization' --- Cris W. Barnes

- Material discoveries, device physics, data science, light source experiments
- Parallel development paths (multiple concepts, low+high risk).

\rightarrow ~ Dawn to photograph μ - & nano-horses feeding on atoms and molecules

Backups

UNCLASSIFIED

BoD DEC 2014

Marie XFEL & Experiments

UNCLASSIFIED

3rd harmonic included

Inputs: Rich Sheffield, Dinh Nguyen

MaRIE

T. Raubenheimer LCLS-II-HE Workshop, September 26-27, 2016

P. Abbamonte et al., SLAC-R-1053 (2015)

UNCLASSIFIED

ICHSIP 2016